

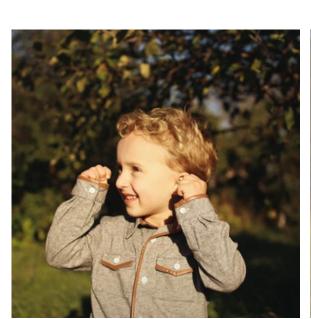
Learning Temporal Relations for Evaluating Instruction-Guided Image Editing

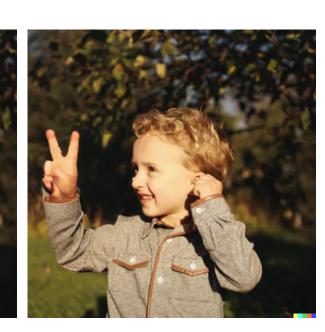
Pia Donabauer^{1,2}, Udo Kruschwitz¹, Alexander Tack²

1. Introduction

Instruction-Guided Image
Editing enables automated
image modification based on
natural language
instructions, using trained
AI models.

Universität Regensburg





(a) Example of an image edit The child's right hand made a scissors gesture

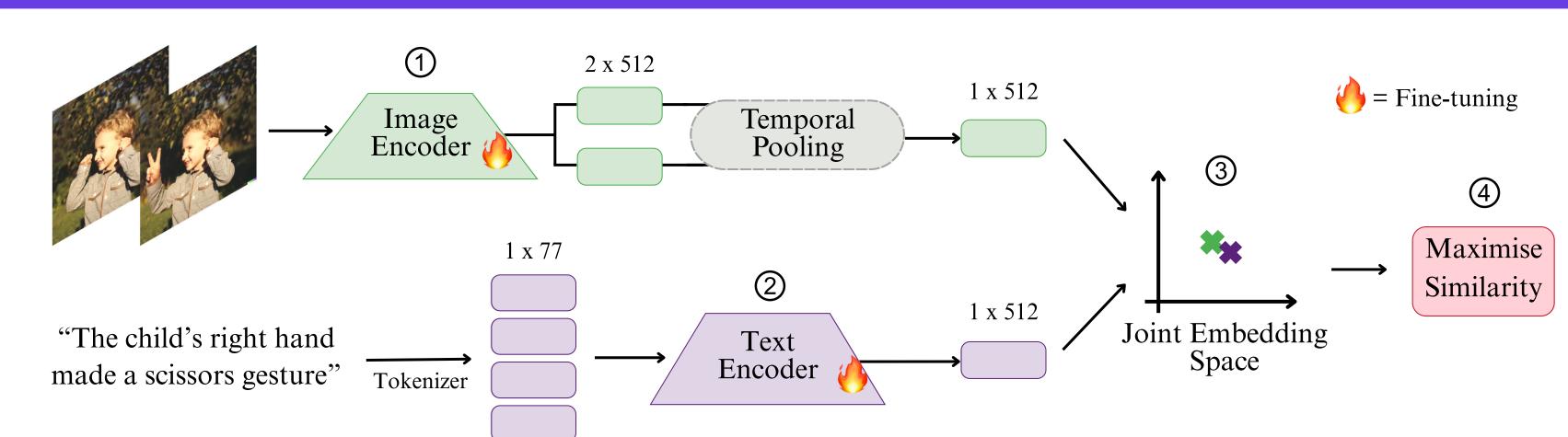
Problem: Lack of an established evaluation framework tailored to text-guided image editing.^{1,2,3}

Existing metrics are often inadequate, risking misrepresentation of results and slowing research progress.

Limitations:

- Automated metrics are efficient,² but measure image quality rather than instruction fidelity.³ Weak correlation with human judgement.⁴
- **Human evaluation** is more reliable, but costly, time-consuming and difficult to scale.^{5,6}
- Visual Language Models (VLMs)-as-a-judge show promise,⁷ but may hallucinate, be biased or misunderstand visuals.^{8, 9}

3. Methodology



- ① Image edit pairs are encoded as **2-frame videos:** [original image \rightarrow edited image].
- ② Instruction is encoded.
- 3 Both the embeddings are projected into a joint embedding space.
- (4) Training: Video-Finetuned CLIP¹³ (ViFi-CLIP) is fine-tuned on a video-to-text retrieval task, ranking edit-caption pairs by maximising similarity.
 - Dataset: **HumanEdit**¹⁴ (5,751 samples, human-curated)
- ⑤ Inference: Assign each image pair and instruction a similarity score.
- © Evaluation: Conduct human annotation study to assess human alignment.
 - Dataset: MagicBrush¹⁵ (10,388 samples, varying quality)
- The Classify edits using GPT-40 for a more detailed analysis.

(5)	Instruction	Score	
	put a glass of soda on the table	23.86	
	let's add a man in the kitchen	21.52	
	spill milk onto the floor	21.05	
	let there be a cup of yogurt	19.2 5	
-			

5. Qualitative Results

(h) High human ratings (0.90* to 1.00) and low ViFi-CLIP scores (0.07 to 0.13)

Can we have mountains on the background?

Let there be potted plant

(i) Low human ratings (0.04 and 0.14) and medium ViFi-CLIP scores (0.40 and 0.59)

Add a cotton candy machine

Add a shark next to the surfboard

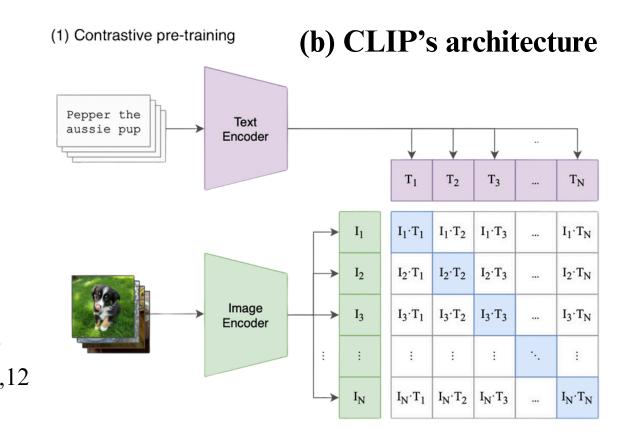
(j) High disagreement among human raters (9-point difference on a 10-point Likert scale).

Let the umbrella be striped

*all values min-max normalised

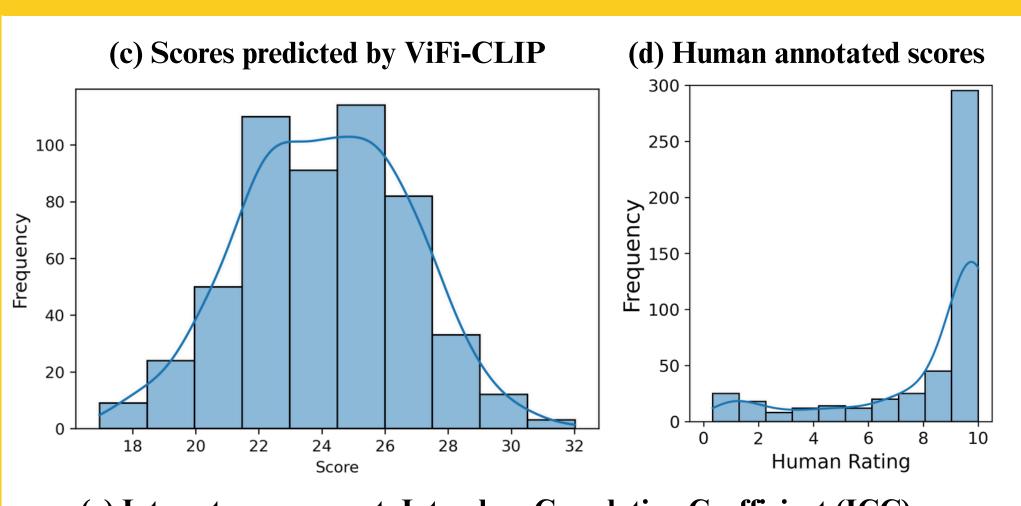
2. Approach

• Advances in video
understanding using
Contrastive LanguageImage Pre-Training¹⁰
(CLIP) suggest its
potential to comprehend
temporal dependencies.^{11,12}



- An image edit can be interpreted as a transformation from an original to an edited state.
- → Use similar modelling techniques to evaluate image edits.
- → Learn **spatio-temporal relationships** of video sequences to better capture changes between image edit pairs and their instructions.

4. Quantitative Results



((e) Interrater agreement: Intraclass Correlation Coefficient (ICC)									
		alignment	quality	consistency	overall					
	ICC (2.1)	0.73	0.51	0.38	0.66					

- Mean rank of 161.22, Median rank of 29.60 (out of 1,128)
- Recall@k scores for $k \in \{1, 5, 10, 50\}$: 9.19, 24.13, 33.42, 59.49

(f) Spearman correlation coefficient between human annotations and ViFi-CLIP's predictions

Aspect	Spearman's ρ	<i>p-</i> value
alignment	0.12	0.01
quality	0.03	0.59
consistency	0.0 5	0.29
overall	0.09	0.04

(g) Spearman correlation on a subset of primarily extremely good and bad edits

Aspect	Spearman's $ ho$	<i>p-</i> value	
alignment	0.42	< 0.001	
quality	0.28	0.02	
consistency	0.28	0.02	
overall	0.40	< 0.001	

6. Discussion

- Highly subjective nature of evaluating visual content.
- ViFi-CLIP shows moderate retrieval performance, struggling to capture fine-grained distinctions.
- Performance improves significantly for:
 - Extremely well or poorly executed image edits.
 - Specific edit types (e.g. object removals, food, drastic changes).
 - Larger high-quality training data available.
- Lower performance observed for attribute changes, subtle changes, edits involving people, backgrounds and objects.

Why is performance **limited**? (1) **Average pooling** may oversimplify complex instructions. (2) **CLIP's limitations** in fine-grained perception (pre-trained on 224x224 and prominent objects). (3) **Discrepancy** between training and eval data distribution.

[1] Xiang et al., Deep learning for image inpainting, in *Pattern Recogn.* (2023). [2] Xu et al., A Review of Image Inpainting Methods Based on Deep Learning, in *Appl. Sci.* (2023). [3] Kim et al., A Review of Image Inpainting Methods Based on Deep Learning, in *Appl. Sci.* (2023). [5] Peng et al., DreamBench++, in *ICLR* (2025). [6] Tan et al., Judgebench, in *ICLR* (2025). [7] Zheng et al., Judgebench, in *ICLR* (2023). [8] Chen et al., WIEScore, in *Annual Meeting of the ACL* (2023). [10] Radford et al., Learning Transferable Visual Models From Natural Language Supervision, in *ICLR* (2021). [11] Huang et al., FROSTER, in *ICLR* (2024). [12] Fang et al., CLIP2Video (2021). [13] Rasheed et al., HQ-Edit, in *ICLR* (2025). [15] Zhang et al., MagicBrush, in *NeurIPS* (2024).