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Automated Transport Systems

▪ Technological advances pave the way for increasing levels of 

automation

▪ These systems operate in an complex operational design domain 

that is difficult to fully characterize

▪ With increasing automation the human as redundant monitoring 

instance is omitted

▪ Decision making procedures based on AI algorithms are often 

treated as black-box
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Challenges for Automated Systems

▪ Current accident data 

bases are not 

representative for 

automated systems

▪ Statistical evidence of safety 

by distance-based 

approaches is not feasible

▪ Every update of the system 

requires a new evaluation

▪ Ethically problematic
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2022

Germany

Accidents Overall 

Distance

Distance 

between 

two 

accidents

Accident-free 

distance required 

for evidence 

(confidence: 95%)

Injuries 289 672 7.1*1011 km 2.6*106 km 7,34*106 km

Fatalities 2788 7.1*1011 km 2.5*108 km 7,63*108 km

Source: Statistisches Bundesamt (Destatis), 2023 

▪ Established safety processes are primarily concerned with hazardous events caused 

by component faults and failures

▪ For automated systems relying on situational awareness, the specified functionality 

itself can cause hazardous situations despite the absence functional safety faults



Hazard and Risk Analysis 

Definition (Risk Analysis, ISO/IEC Guide 51):

Systematic use of available information to identify hazards and to estimated their risks

Definition (Hazard, ISO/IEC Guide 51):

Potential source of harm.

➢A  hazard and risk analysis aims at identifying and evaluating potential causes of a harm
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Hierachy of Causality
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Counterfactuals: ‘If X had occurred, what would have  been Y?’

Intervention: ‘If I do X, how  will it  change Y’

Association: ‘If I see X, what does it tell me about Y?’



Causal Theory

▪ Causal theory according to J. Pearl provides a formal notion 

of causality by combining graphs with Bayesian statistics

▪ The joint probability distribution can be estimated based 

on the causal structure:

𝑃 𝑜, 𝑙, 𝑤 = 𝑃(𝑜|𝑙, 𝑤) ∙ 𝑃(𝑙|𝑤) ∙ 𝑃(𝑤)

▪ The do-operator 𝑑𝑜(𝑋 = 𝑥) simulates an intervention by 

deleting incoming edges defining X and setting X=x for all 

other variables

▪ The do-calculus provides means to estimate a causal effect 

based on observational, non-experimental data

▪ A set of variables is admissible for adjustment if it is 

sufficient to estimate the causal effect
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Causal Safety Analysis 

Modelling

Instantiation

Verification

Evaluation of Causal Effects

Investigation of Safety Measures
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Modelling the Causal Structure
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Given a hazard…

i. define a context

ii. find suitable criticality metrics

iii. model the system

iv. model the environment

Object Recognition

Layer Property

L1 Street Layer A road shall exist, no 

further constraints

L2 Traffic Infrastructure unconstrained

L3 Temporal Modifications No temporal modifications

L4 Dynamic Objects An Ego vehicle and another 

object shall exist

L5 Environment Conditions unconstrained

L6 Digital Information unconstrained

The context of a causal structure defines a 

set of constrains on the existence and 

properties of objects in suitable ontology.



Modelling the Causal Structure
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Given a hazard…

i. define a context

ii. find suitable criticality metrics

iii. model the system

iv. model the environment

Object Recognition

The context of a causal structure defines a 

set of constrains on the existence and 

properties of objects in suitable ontology.

A criticality metric is a function that 

estimates aspects of criticality in a scene 

or scenario.



Modelling the Causal Structure
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Given a hazard…

i. define a context

ii. find suitable criticality metrics

iii. model the system

iv. model the environment

Object Recognition
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Instantiation

A causal relation is called partially instantiated w.r.t. a subset of nodes N by a Dataset D, if 
the CPDs of  the nodes in N are instantiated by D.

It is called instantiated for a node X w.r.t. N by D, if it is partially initiated w.r.t. N by D and N 
contains the criticality metric φ and at least one adjustment for the causal effect of X on φ.
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Instantiation - Real World Data
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Requirements:

i. Nodes can be described as discrete 

random variables which are measured 

during test drives or can be obtain from 

existing data

ii. There is sufficient data for the 

instantiation of the causal relation

iii. The context is observable during the 

test drives and in existing data used



Instantiation - Simulation
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Requirements:

i. Nodes can be described as discrete 

random variables which are logged 

during simulation runs

ii. The context is realizable in the 

simulation 

iii. The simulation environment and 

models are valid in the context
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Verification of Causal Assumptions
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Modelled Causalities: Real Causalities:

Goal: Evaluation of the modeling quality 

• Kullback-Leibler divergence: 𝐾𝐿 𝑃 𝑀𝑀𝑜𝑑𝑒𝑙 𝑄 𝑀𝑅𝑒𝑎𝑙 = σ𝑥 𝑃 𝑥 log
𝑃(𝑥)

𝑄(𝑥)
= 0,0134 > 0

• Hellinger distance: 𝐻2 𝑃 𝑀𝑀𝑜𝑑𝑒𝑙 𝑄 𝑀𝑅𝑒𝑎𝑙 =
1

2
σ𝑥( 𝑃 𝑥 − 𝑄 𝑥 )2 = 0,066 > 0
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Evaluation of Causal Effects

Goal:: Investigation of the causal influence …

…of single causal factors 

…of combinations of causal factors 

…via specific paths
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Evaluation of Causal Effects

Goal:: Investigation of the causal influence of

single causal factors 

▪ Average Causal Effect: 

𝐴𝐶𝐸 = 𝑃 𝑌 𝑑𝑜 𝑋 = 𝑥 − 𝑃(𝑌|𝑑𝑜 𝑋 = 𝑥𝑟𝑒𝑓 )

▪ Relative Causal Effect:

R𝐶𝐸 =
𝑃(𝑌|𝑑𝑜 𝑋=𝑥 )

𝑃(𝑌|𝑑𝑜 𝑋=𝑥𝑟𝑒𝑓 )
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Evaluation of Causal Effects

Goal:: Investigation of the causal influence of 

combinations of causal factors 

▪ Causal models allow for the investigation of multiple 

combined interventions

▪ The causal metrics ACE, RCE and IRRW can be 

adopted for multiple interventions by replacing the 

variable being intervened on by a vector of variables
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Investigation of Safety Measures

▪ Technical modifications

▪ Adjustment of the behavior/ dynamics

▪ Restriction of the operational design domain

▪ Adaption of the communication

▪ Structural changes
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Categories of Safety Measures:



Investigation of Safety Measures
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(1) Adaption of Context: (2) (Stochastic) Interventions:



Investigation of Safety Measures
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(3) Adaption of Causal Structure:



Future Work

▪ Application to real world use cases

▪ Causal modeling of dynamic interactions

▪ Integration into a model-based approach

▪ Modularity of causal models

▪ Application of causal learning

▪ Verification of causal assumptions on interventional level
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Thank you for the attention.

Contact:

Lina Putze, M.Sc. 
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lina.putze@dlr.de
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