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Deep Transfer Learning as State-of-the-Art

Reduce time to select a
hyperparameter space

Reduces training time

Reduces amount of models to
train

Avoids overfitting
Even obtain better results
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Features of a DL-Model are Transferable

Transferability is negatively affected by:

Specialization of higher layer neurons — specialization towards target task’

Increasing dataset and/or task dissimilarity?
Transfer learning is powerful:

Initializing a network with transferred features results in a generalization
boost that lingers after fine-tuning

When target training dataset is significantly small

Training of a large DL model without overfitting

TJason Yosinski et al. “How transferable are features in deep neural networks?” In: Advances in Neural Information Processing Systems 27. Ed. by
Z. Ghahramani et al. Curran Associates, Inc., 2014, pp. 3320-3328.

ZKarl R. Weiss, Taghi M. Khoshgoftaar, and Dingding Wang. “A survey of transfer learning”. In: J. Big Data 3 (2016), p. 9

Hassan Ismail Fawaz et al. “Transfer learning for time series classification”. In: IEEE International Conference on Big Data, Big Data 2018, Seattle, WA,
USA, December 10-13, 2018. Ed. by Naoki Abe et al. IEEE, 2018, pp. 1367-1376
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Abundance of Available DL Models: Which DL Model to Choose?

Numerous "model repositories” exist, such as:

TensorFlow Hub KeraS @ ONNX gMode'Depot ModelZoo

Problem:

An abundance of (freely) available pre-trained DL models complicates selection
of an appropriate DL model for successful Transfer Learning.
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Research Goal

Design and build a repository to support the
search and selection of one deep learning model
for transfer learning such that, for a given new
dataset and its task, the obtained model receives a
better performance measure than training such a
model from scratch.
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Leading Hypothesis

If the training data of a stored model is similar to
those of the new dataset, then this stored model
Is suitable for Transfer Learning.



Transfer Learning Framework

new DL
Repository R problem
@ similar
Dataset D; =@
reduces set of
available models \_ (| model M, transfer :

@ compare & select
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Transfer Learning Rarely Used in a
Time Series Modeling Context



Transfer Learning for Univariate Time Series

Ye and Dai, 2018: Time series forecasting. Extract characteristics from
univariate time series with extreme learning machine with kernels, train
multiple models on these information, create ensemble models.?

He, Pang, and Si: (Financial) time series forecasting. Train DL model on two
source datasets.”

Ye and Dal, 2021: Time series forecasting. Find similar time series with DTW
and Jensen-Shannon divergence, train CNN on similar time series and then
fine-tune on both query and similar time series.”

3Rui Ye and Qun Dai. “A novel transfer learning framework for time series forecasting”. In: Knowl. Based Syst. 156 (2018), pp. 74-99.

“Qi-Qiao He, Patrick Cheong-lao Pang, and Yain-Whar Si. “Transfer Learning for Financial Time Series Forecasting”. In: PRICAI 2019: Trends in Artificial
Intelligence - 16th Pacific Rim International Conference on Artificial Intelligence, Cuvu, Yanuca Island, Fiji, August 26-30, 2019, Proceedings, Part II.

ed. by Abhaya C. Nayak and Alok Sharma. Vol. 11671. Lecture Notes in Computer Science. Springer, 2019, pp. 24-36.

5Rui Ye and Qun Dai. “Implementing transfer learning across different datasets for time series forecasting”. In: Pattern Recognit. 109 (2021), p. 107617.
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Fawaz et al.: Transfer Learning for Time Series Classification®

- 85 univariate time series + CNN

- Brute force Transfer Learning

- Replace output layer with new
softmax layer and fine-tune
- 71/85 better with similarity

- Nearest neighbor not always best,
sometimes 2nd nearest neighbor

0Hassan Ismail Fawaz et al. “Transfer learning for time series classification”. In: IEEE International Conference on Big Data, Big Data 2018, Seattle, WA,
USA, December 10-13, 2018. Ed. by Naoki Abe et al. IEEE, 2018, pp. 1367-1376.

Melanie B. Sigl (FAU-CS6), Deep Transfer Learning Model Selection



Searching Datasets for Transfer Learning

Natural Language Processing (NLP) such as sentiment analysis,
part-of-speech tagging, and named entity recognition. [RP17; Akd20; SLE18;
LM20; Lin+19; Ba18]
[Lin+19]: Extract textual features such as type-token ratio, word overlap,
phonological distance; train ensemble of decision-trees; select high-resource
language for transfer learning for a low-resource language.
Image datasets: [Bha+20; Sch+18; BEF19; Pra+19]
Compute dataset difficulty of dataset to search for datasets with similar
difficulty [Sch+18; Ist+19]
[Pra+19]: Propose dataset similarity ranker for image datasets. Extract image
related features, train several classifiers to predict which feature vector
belongs to which dataset, enemble predictions.

Extracted features depend on type of dataset (text vs. image). Various
similarity functions used.
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Data Set Characteristics for
Similarity



Dataset Used: NASA’s Lithium lon Battery Dataset

NASA’s Li-lon battery dataset consisting of 34 data sets’

Battery EOL after losing 30% of its capacity.

Datasets can be used for Predictive Maintenance and Remaining Useful Life
(RUL) prediction.

State-of-Health (SOH) is commonly used for RUL prediction. %00

’Bhaskar Saha and Kai Goebel. Battery Data Set. NASA Ames Prognostics Data Repository. NASA Ames Research Center, Moffett Field, CA. 2007. URL:
http://ti.arc.nasa.gov/project/prognostic-data-repository (visited on 05/09/2022).
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http://ti.arc.nasa.gov/project/prognostic-data-repository

Dataset Used: NASA's Lithium lon Battery Dataset
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Naive Approach to Compute Time Series Similarity

Descriptive statistics: minimum, maximum, mean, median, variance,
standard deviation, quantiles (0.05, 0.25, 0.75, 0.95)

Use Euclidean distance to order datasets.
Build Transfer Ground-Truth:

Train LSTM on each individual battery dataset.
Perform brute force transfer learning similarly to Fawaz et. al.8

Transfer DL-Model with Modification: Re-initialize last layer (output layer)
and retrain whole network.

8Hassan Ismail Fawaz et al. “Transfer learning for time series classification”. In: IEEE International Conference on Big Data, Big Data 2018, Seattle, WA,
USA, December 10-13, 2018. Ed. by Naoki Abe et al. IEEE, 2018, pp. 1367-1376.
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Transfer Results: Naive Approach to Time Series Similarity
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Transfer Results: Naive Approach to Time Series Similarity

Heatmap of Transfer Learning with Improvement in Percent
Similar Dataset
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Summary

- Transfer learning shows positive
improvement in some cases.

- Other cases show negative
transferability.

- First nearest neighbour usually
performs poorly.

- Second nearest neigbour also
performs poorly.

- Distributional statistics not
sufficient.
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Create Reference Time Series Using DTW with Barycenter Averaging
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Transfer Results: Naive Approach vs.
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Transfer Results: Naive Approach vs. DTW Barycenter Averaging

Number of Improvements
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Ways Forward to Improve Naive Similarity

Extract time-series specific characteristics such as trend, seasonality, chaos,
skewness, and kurtosis. Thus, extracting similar characteristics as Wang,
Smith, and Hyndman®.

Extract further characteristics as Fulcher and Jones, albeit maybe not as
much as they did (they extracted over 9,000 features).”

9Xiaozhe Wang, Kate Smith, and Rob Hyndman. “Characteristic-Based Clustering for Time Series Data”. In: Data Mining and Knowledge Discovery 13.3

(May 2006), pp. 335-364.
198en D Fulcher and Nick S Jones. “Highly comparative feature-based time-series classification”. In: IEEE Transactions on Knowledge and Data

Engineering 26,2 (2014), pp. 3026-3037.
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Ways Forward to Improve DTW Barycenter Averaging Similarity

Currently: Sum DTW distances of each dataset attribute.
Find similar dataset similarity based on individual attribute similarities.

DTW Barycenter Averaging method yields a reference time series that may

not reflect the variability of a set of time series. Extend it with a confidence
interval.
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Summary and Ways Forward



Summary and Ways Forward

Improve naive similarity approach by using dedicated time series
characteristics

Improve DTW Barycenter Averaging approach by extending to search for a
similar attribute among all available attributes of another dataset; extend it
by introducing a confidence interval.

Use datasets from another domain such as NASA's turbofan engine
degradation dataset

Extend current regression task to time series classification
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