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Breakthrough of Al
with Deep Learning
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Abstract

We develop an algorithm that can detect
pneumonia from chest X-rays at a level ex-
ceeding practicing radiologists. Our algo-
rithm, CheXNet, is a 121-layer convolutional
neural network trained on ChestX-ray14, cur-
rently the largest publicly available chest X-
ray dataset, containing over 100,000 frontal-
view X-ray images with 14 diseases. Four
practicing academic radiologists annotate a
test set, on which we compare the perfor-
mance of CheXNet to that of radiologists.
We find that CheXNet exceeds average ra-
diologist performance on the F1 metric. We
extend CheXNet to detect all 14 diseases in
ChestX-ray14 and achieve state of the art re-
sults on all 14 diseases.

1. Introduction

More than 1 million adults are hospitalized with pneu-
monia and around 50,000 die from the disease every
year in the US alone (CDC, 2017). Chest X
are currently the best available method for diagnosing
pneumonia (WHO, 2001), playing a crucial role in clin-
ical care (Franquet, 2001) and epidemiological studies
(Cherian et al., 2005). However, detecting pneumo-
nia in chest X-rays is a challenging task that relies on
the availability of expert radiologists. In this work, we
present a model that can automatically detect pneu-
monia from chest X-rays at a level exceeding practicing
radiologists.

“Equal contribution  *Stanford University Depart-
ment of Computer Science ’Stanford University De-
partment of Medicine *Stanford University Depart-
ment of Radiology.  Correspondence to:  Pranav
Rajpurkar <pranavsriics.stanford.edu>, Jeremy Irvin
<jirvin16cs.stanford.edu>.
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Figure 1. CheXNet is a 121-layer convolutional neural net-
work that takes a chest X-ray image as input, and outputs
the probability of a pathology. On this example, CheXnet
correctly detects pneumonia and also localizes areas in the
image most indicative of the pathology.

Our model, ChexNet (shown in Figure 1), is a 121-
layer convolutional neural network that inputs a chest
X-ray image and outputs the probability of pneumonia
along with a heatmap localizing the areas of the im-
age most indicative of pneumonia. We train CheXNet
on the recently released ChestX-rayl4 dataset (Wang
et al., 2017), which contains 112,120 frontal-view chest

Project  website at  https:/
github.io/projects/chexnet

X-ray images i labeled with up to 14 differ-
ent thoracic diseases, including pneumonia. We use
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Al vs Doctors: Chest X-Rays

Al was significantly more accurate and precise than
radiologists and physicians in diagnosing chest x-rays.

AUC-ROC: Human vs Computer

|

True Positive Rate

0.2 0.4 [ X) 0.8
False Positive Rate

\Clearvue Health

c
Radiologists

[] Radiologists

D Physicians

Hwang et al

Chinese Al beats 15 doctors in fumor
diagnosis competition

CONFIDENTIAL



We should
stop traihing
radiologists
how!"”

- Geoffrey Hinton, 2016

https://www.youtube.com/watch?v=2HMPRXstSvQ
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% Change (Workload / Physicians)

Al can fill the demand-supply gap

by making radiologists ...
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for routine tasks

Mammography screening

Each mammogram read by
two radiologists
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enhancing doctors

Diagnosis of CT Brain scans

Each cCT read by one
radiologists

1§|
£330

cCT read by one
radiologist plus Al

& s
(] ) +
£30A



enhancing doctors

Diagnosis of CT Brain scans

Each cCT read by one
radiologists

1§|
£330

cCT read by one
radiologist plus Al

& s
[} ) +
£30A



enhancing doctors

Diagnosis of CT Brain scans

Each cCT read by one
radiologists

1§|
£330

cCT read by one
radiologist plus Al

& s
[} ) +
£30A

No Al No Al



Al enhancing do
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as safety net

Prioritisation based on cCTs

Radiologist is working
through chronologically

Worklist prioritised based
on Al
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as safety net

Prioritisation based on cCTs
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augmenting doctors

Brain MRI scans

Radiologist is diagnosing as
usual
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augmenting doctors

(A) Alzheimer's disease - ROC-Analysis of MRI interpretation

Brain MRI scans

Radiologist is diagnosing as
usual

All assessments  Grouped by diagnosis
(n=285) (n=283)

Radiologist receives additional
quantification through Al
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3 Key Challenges

1 Choosing the right Al tool(s)
Any choice comes at a high cost
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Choosing the right Al tool(s)
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Solution

Provides a single-installation solution to easily
d e e p c O S AI M ‘ integrate Al into clinical workflows

On-premise Cloud



3 Key Challenges

1 Choosing the right Al tool(s)
Any choice comes at a high cost

2 Integrating Al into the workflow
Radiologists will not buy in into changing their existing workflow



into the workflow

You want to use Al to prioritize stroke and
bleeding cases in your workflow

Worklist Image Study Report writing Ringing phone
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Deeply integrating with existing workflows

Display of

e Processing Status

e Prioritization Column

e Al Preview of Diagnoses




3 Key Challenges

1 Choosing the right Al tool(s)
Any choice comes with a buy-in

2 Integrating Al into the workflow
Radiologists will not buy in into changing their existing workflow

3 The need for giving feedback
It should be built into the system
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Establish a feedback loop

Series Approve or Reject Al Push to PACS
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Establish a feedback loop
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3 Key Challenges

1 Choosing the right Al tool(s)
Any choice comes with a buy-in

2 Integrating Al into the workflow
Radiologists will not buy in into changing their
existing workflow
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deepcOS is available for use in the EU. deepcOS will be
registered as MDDS in the US and is currently not available
for use in the US. All medical devices available on deepcOS
are regulatory cleared for use in the EU under M MDD.
Only selected medical devices available on deepcOS are
regulatory cleared for use in the US under FDA. Please
contact support for further information.
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