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Design of Experiments
Generating costly data

The industrial problem How we cannot solve the problem:
In R&D, real life experiments are taken out, Refining Traditional DoE-Methods:
where each experiment costs a lot of time x strong assumptions and/or crazy heuristics

and money (~ k€).
Using pure heuristic Machine Learning:

Can we be more flexible and reduce the costs x Data is costly.
using ML-methods?
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A solution
Think Bayes!

Experimental data

A

>

Initialisation
What the engineers in the lab
measured once.
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ML Model

A

>

Pure Machine Learning
What a data scientist could do
with the data.

Informed ML Model

A

>

Informed Machine Learning
An expert told the data scientist
that the response always falls
back to a constant value.

Probabilistic Informed ML
Model

A

Probabilistic Machine
Learning

A data scientist that does not
fully trust the expert.
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Active Learning, Bayesian Optimization and the sequential DoE Process
Think Bayes!

Use acquisition functions to maximize information in relevant areas

of your process.
Here: search for the minimum.
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A real project: overview and goal

Experiments to determine component and material
properties are complex, time-consuming and expensive.

We have already successfully used machine learning for data-
driven prediction of fatigue properties of high-strength steels.

In this project, we use uncertainty-aware ML methods to predict
the 50% fatigue strength and its scatter from material and
component properties.

We use this prediction as a prior distribution and derive a
recommendation for the load to be tested in the following
experiment (design-of-experiments).

This recommendation is chosen in such a way that it optimally
improves the fatigue strength estimation and minimizes the
number of necessary experiments.

With each experiment, the prediction is refined.
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The problem

Task:

For a specific material, the fatique strength is log-normally
distributed. Find a method to estimate the mean of this
distribution at a given precision for a new material.

Given:

Mean of the distributions for different materials. (Some) full
experimental series. (material -> loads -> failure/survivor)

hardness roughness

\ X( microstructure

anisotropy
Stressed volume
Approach:
Material
parameters (Probabilistic)
Regression
Model
Get point
with highest
orior- MAP estim.ate of influence on
Aormal mean fatique mean fatique
distribution strength strength,
update
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Covariance functions (kernels)

Examples of covariance functions pu.cnaud, 2014
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Covariance functions (kernels)
Examples of covariance functions pu.cnaud, 2014
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Choosing the kernel means to implement assumptions about the

behaviour of the different materials.
Here, we implemented assumptions on linearity/smoothness/... for the
different inputs (hardness, ...)
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The problem

Task:

For a specific material, the fatique strength is log-normally
distributed. Find a method to estimate the mean of this
distribution at a given precision for a new material.

Given:

Mean of the distributions for different materials. (Some) full
experimental series. (material -> loads -> failure/survivor)

hardness roughness

\ X( microstructure

anisotropy
Stressed volume
Approach:
Gaussian Process
Material Model
parameters (Probabilistic)
Regression
Model
Get point
with highest
orior- MAP estim.ate of influence on
Aormal mean fatique mean fatique
distribution strength strength,
update
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A real Project Setup classical Bayes:
Use u,,, a,, GPs as prior for the
— v fit of the (log)normally
Material parameters Prob. Fatique strength | distributed fatique strengthina | ™
> Regression T > MAP approach, convergence
Model (GP) " search for experiment with
largest influence on iy 4p

Prior i~ N (pan, Likelihood
Posterior o~ N(pm, om)
1 1= Hm
= f(w - f(susjlu) = exp| —1 < ) I—ICD s 1—[1 s
940 = 1 f(susli) = =—exp| =7/ wo (50 Dy (5)
MAP estimate Hmap = argmax, g(i) Tg!gfs i, SUrVIvors j
- d -
New experiment o = argmaxsd—“z = Ui Assumption: normal

distribution of fatique strength
Uncertainty of MAP duyap= Std[g(W)]
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A real Project Setup classical Bayes:

Use u,,, a,, GPs as prior for the
— ” fit of the (log)normally
Material parameters Prob. Fatique strength | distributed fatique strengthina | ™
Regression oo MAP approach,
Model (GP) search for experiment with

largest influence on ppap

convergence

v

Posterior

distributed variable, the fatique strength is (like assumed in the GP)

The posterior arised from the set-up: being a failure or not is a bernoulli-
gw) = f(w - f(Si: g g . 1- CD,LL,J (Sj)>
normally distributed.

failures i, survivors j

MAP esti oad s
- . _ _ Assumption: normal
New experiment S = argmaxs ds Hmap distribution of fatique strength

Uncertainty of MAP duyap= Std[g(u)]
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The problem

Approach Results
, Gaussian Process With historical data, we could estimate that our approach reduces
Material o Model the amount of necessary experiments by > 25 %.
parameters (Probabilistic)
Regression In real life, that would mean a reduction of ~ 60.000 €.
Likelihood L :
Model . A feasibility study will follow.
' Get point
Wlth hlghest 300 " * " —Dp:ti!nization results )
o wapestimateof uence or =
normal mean fathue mean fathue 250 # GP model predictive mean
T strength
distribution strength, B w0
update o
! ™ T Py r"!'_ﬁ_?‘—-'-x
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Experiment run
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Contact

Dorina Weichert

Data Scientist

Tel. +49 2241 14-2284
dorina.weichert@iais.fraunhofer.de

Fraunhofer-Institut fur intelligente
Analyse- und Informationssysteme |AIS
Schloss Birlinghoven 1

53757 Sankt Augustin

www.iais.fraunhofer.de
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