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Results

Basic Linear Mixed Model

Estimate the effect of a single genetic 

marker:
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Batch-wise Linear Mixed Model

Estimate the effects of several genetic 

markers simultaneously using 3D-tensors:
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Permutation-based Linear Mixed Model

Estimate the effects of several genetic markers 

and permutations simultaneously using 4D-
tensors:
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Runtime comparison to state-of-the-art

~11 days

~2.7 days

~1.8 h

~20 h

False Discovery Rate for skewed phenotypes

Comparison of the runtime of permGWAS to EMMAX [3]

and FaST-LMM [4] with respect to

A. Number of markers with fixed number of 1000 samples

B. Number of samples with fixed number of 106 markers

C. Number of permutations with 1000 samples and 106

markers

Comparison of False Discovery Rate (FDR) of

permutation-based thresholds and Bonferroni

threshold for synthetic phenotypes with gamma-

distributed noise:

 FDR increases when phenotypes become

more skewed

 Permutation-based thresholds become more

stringent for skewed phenotypes

 Permutation-based thresholds have lower

FDR for skewed phenotypes than Bonferroni

threshold

Examples of GWAS in Arabidopsis thaliana

Permutation-based threshold

Bonferroni threshold

Analysis of GWAS results for real

phenotypes from model plant Arabidopsis

thaliana [5,6]:

A. For normally distributed phenotypes

the permutation-based threshold is

less conservative

B. For non-normally distributed

phenotypes the permutation-based

threshold is more stringent

• Genome-wide association studies (GWAS) are a key tool to

analyze relationship between genotypes and phenotypes

• Linear mixed models (LMMs) test whether a single genetic

marker is associated with a given phenotype via the model

• Variance components are estimated by maximizing the likelihood

function 𝐿(𝜷, 𝜎𝑔
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• Assumptions of Gaussian distribution and independent genetic

markers are often violated in real-world data

• Commonly used Bonferroni significance threshold [1] often too

conservative for normally distributed phenotypes or not stringent

enough for phenotypes with skewed distributions

• Idea: permutation-based threshold via maxT method [2]:
• Permute phenotype q times and compute minimal p-value for each permutation

• The adjusted threshold is the 𝛼𝑡ℎ percentile

• Problem: enormous computational complexity

• Solution: permGWAS, an efficient reformulation of LMMs using 3D

and 4D tensors that can provide permutation-based thresholds
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