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Deep Transfer Learning as State-of-the-Art

• Reduce time to select a
hyperparameter space

• Reduces training time
• Reduces amount of models to
train

• Avoids overfitting
• Even obtain better results

transfer
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Three Signs Transfer Learning was Successful1
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1adapted and extended from: Torrey, L., & Shavlik, J., Transfer Learning, Handbook of Research on Machine Learning Applications and Trends, 2010.
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Possible Modifications of a Source DL Model: Which to Perform?

1. Base: Pre-trained
DL Model

2. Change number of
output neurons

3. Freeze first n
hidden layers,
fine-tune others or
re-initialize weights

4. Add new hidden
layer
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Features of a DL-Model are Transferable

Transferability is negatively affected by:

• Specialization of higher layer neurons→ specialization towards target task2

• Increasing dataset and/or task dissimilarity3

Transfer learning is powerful:

• Initializing a network with transferred features results in a generalization
boost that lingers after fine-tuning

• When target training dataset is significantly small
• Training of a large DL model without overfitting

2Jason Yosinski et al. “How transferable are features in deep neural networks?” In: Advances in Neural Information Processing Systems 27. Ed. by
Z. Ghahramani et al. Curran Associates, Inc., 2014, pp. 3320–3328.
3Karl R. Weiss, Taghi M. Khoshgoftaar, and Dingding Wang. “A survey of transfer learning”. In: J. Big Data 3 (2016), p. 9
Hassan Ismail Fawaz et al. “Transfer learning for time series classification”. In: IEEE International Conference on Big Data, Big Data 2018, Seattle, WA,
USA, December 10-13, 2018. Ed. by Naoki Abe et al. IEEE, 2018, pp. 1367–1376
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Abundance of Available DL Models: Which DL Model to Choose?

Numerous ”model repositories” exist, such as:

ModelZoo

Problem:

An abundance of (freely) available pre-trained DL models complicates selection
of an appropriate DL model for successful Transfer Learning.
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Research Goal

Design and build a repository to support the
search and selection of one deep learning model
for transfer learning such that, for a given new
dataset and its task, the obtained model receives a
better performance measure than training such a
model from scratch.
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Leading Hypothesis
If the training data of a stored model is similar to
those of the new dataset, then this stored model
is suitable for Transfer Learning.



Transfer Learning Framework

transfer

1 similar

Repository R

new DL
problem

Dataset Di

DL Model Mj

MT

DT
reduces set of

available models

2 compare & select
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Transfer Learning Rarely Used in a
Time Series Modeling Context



Transfer Learning for Univariate Time Series

• Ye and Dai [YD18]: Time series forecasting. Extract characteristics from
univariate time series with extreme learning machine with kernels, train
multiple models on these information, create ensemble models.4

• He, Pang, and Si [HPS19]: (Financial) time series forecasting. Train DL model
on two source datasets.5

• Ye and Dai [YD21]: Time series forecasting. Find similar time series with DTW
and Jensen-Shannon divergence, train CNN on similar time series and then
fine-tune on both query and similar time series.6

4Rui Ye and Qun Dai. “A novel transfer learning framework for time series forecasting”. In: Knowl. Based Syst. 156 (2018), pp. 74–99.
5Qi-Qiao He, Patrick Cheong-Iao Pang, and Yain-Whar Si. “Transfer Learning for Financial Time Series Forecasting”. In: PRICAI 2019: Trends in Artificial
Intelligence - 16th Pacific Rim International Conference on Artificial Intelligence, Cuvu, Yanuca Island, Fiji, August 26-30, 2019, Proceedings, Part II.
ed. by Abhaya C. Nayak and Alok Sharma. Vol. 11671. Lecture Notes in Computer Science. Springer, 2019, pp. 24–36.
6Rui Ye and Qun Dai. “Implementing transfer learning across different datasets for time series forecasting”. In: Pattern Recognit. 109 (2021), p. 107617.
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Fawaz et al.: Transfer Learning for Time Series Classification7
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Fig. 4: The variation in percentage over the original accuracy when fine tuning a pre-trained model. The rows’ indexes
correspond to the source datasets and the columns’ indexes correspond to the target datasets. The red color shows the extreme
case where the chosen pair of datasets (source and target) deteriorates the network’s performance. Where on the other hand, the
blue color identifies the improvement in accuracy when transferring the model from a certain source dataset and fine-tuning on
another target dataset. The white color means that no change in accuracy has been identified when using the transfer learning
method for two datasets. The matrix actually has a size of 85× 85 (instead of 85× 84) for visual clarity with its diagonal left
out of the analysis. (Best viewed in color).

1372

• 85 univariate time series + CNN
• Brute force Transfer Learning
• Replace output layer with new
softmax layer and fine-tune

• 71/85 better with similarity
• Nearest neighbor not always best,
sometimes 2nd nearest neighbor

7Hassan Ismail Fawaz et al. “Transfer learning for time series classification”. In: IEEE International Conference on Big Data, Big Data 2018, Seattle, WA,
USA, December 10-13, 2018. Ed. by Naoki Abe et al. IEEE, 2018, pp. 1367–1376.
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Searching Datasets for Transfer Learning

• Natural Language Processing (NLP) such as sentiment analysis,
part-of-speech tagging, and named entity recognition. [RP17; Akd20; SLE18;
LM20; Lin+19; Bä18]

• [Lin+19]: Extract textual features such as type-token ratio, word overlap,
phonological distance; train ensemble of decision-trees; select high-resource
language for transfer learning for a low-resource language.

• Image datasets: [Bha+20; Sch+18; BEF19; Pra+19]
• Compute dataset difficulty of dataset to search for datasets with similar
difficulty [Sch+18; Ist+19]

• [Pra+19]: Propose dataset similarity ranker for image datasets. Extract image
related features, train several classifiers to predict which feature vector
belongs to which dataset, enemble predictions.

• Extracted features depend on type of dataset (text vs. image). Various
similarity functions used.
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Data Set Characteristics for
Similarity



Dataset Used: NASA’s Lithium Ion Battery Dataset

• NASA’s Li-Ion battery dataset consisting of 34 data sets [SG07]
• In [Goe+08] the authors detail how they obtained the measurements of
these batteries

• Battery EOL after losing 30% of its capacity.
• Datasets can be used for Predictive Maintenance and Remaining Useful Life
(RUL) prediction.

• State-of-Health (SOH) is commonly used for RUL prediction. It states the
current condition of a battery compared to its initial capacity. current capacitycurrent capacity%

Melanie B. Sigl (FAU-CS6), Deep Transfer Learning Model Selection 12



Dataset Used: NASA’s Lithium Ion Battery Dataset
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Lithium Ion Batteries State-of-Health of Each Battery
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Naive Approach to Compute Time Series Similarity

• Descriptive statistics: minimum, maximum, mean, median, variance,
standard deviation, quantiles (0.05, 0.25, 0.75, 0.95)

• Use Euclidean distance to order dataset.
• Perform brute force transfer learning where for each dataset the DL model of
the first nearest neighbour is reused.

• Reuse: Re-initialize last layer (output layer) and retrain whole network.
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Transfer Results Using Naive Dataset Similarity
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Currently Implemented Naive Time Series Similarity: Results

Summary

• Transfer learning shows positive
improvement in some cases.

• Other cases show negative
transferability.

• First nearest neighbour usually
performs poorly.

• Second nearest neigbour also
performs poorly.

• Distributional statistics not
sufficient.
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Create Reference Time Series Using DTW with Barycenter Averaging
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Transfer Results: Naive Approach vs. DTW Barycenter Averaging
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Transfer Results: Naive Approach vs. DTW Barycenter Averaging

0 10 20 30
Neigbour

5

10

15

20

25

Nu
m

be
r

Number of Improvements

0 10 20 30
Neigbour

5

10

15

20

25

Nu
m

be
r

Number of Deteriorations

Naive Method DTW BA

Summary

• DTW Barycenter Averaging generally
performs better (first five neigbours)

• Interesting: Farthest neigbours of naive
approach performs better

• Some datasets notoriously successful,
whereas some always yield negative
transfer results
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Ways Forward to Improve Naive Similarity

• Extract time-series specific characteristics such as trend, seasonality, chaos,
skewness, and kurtosis. Thus, extracting similar characteristics as Wang,
Smith, and Hyndman [WSH06]8.

• Extract further characteristics as Fulcher and Jones [FJ14], albeit maybe not
as much as they did (they extracted over 9,000 features).9

8Xiaozhe Wang, Kate Smith, and Rob Hyndman. “Characteristic-Based Clustering for Time Series Data”. In: Data Mining and Knowledge Discovery 13.3
(May 2006), pp. 335–364.
9Ben D Fulcher and Nick S Jones. “Highly comparative feature-based time-series classification”. In: IEEE Transactions on Knowledge and Data
Engineering 26.12 (2014), pp. 3026–3037.
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Ways Forward to Improve DTW Barycenter Averaging Similarity

• Currently: Sum DTW distances of each dataset attribute.
• Find similar dataset similarity based on individual attribute similarities.
• DTW Barycenter Averaging method yields a reference time series that may
not reflect the variability of a set of time series. Extend it with a confidence
interval.
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Data Structures for Transfer
Learning



User Story and Architecture
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Summary and Ways Forward



Summary and Ways Forward

• Improve naive similarity approach by using dedicated time series
characteristics

• Improve DTW Barycenter Averaging approach by extending to search for a
similar attribute among all available attributes of another dataset; extend it
by introducing a confidence interval.

• Use datasets from another domain such as NASA’s turbofan engine
degradation dataset

• Extend current regression task to time series classification
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