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Design of Experiments
Generating costly data

The industrial problem

In R&D, real life experiments are taken out, 

where each experiment costs a lot of time 

and money (~ k€).

Can we be more flexible and reduce the costs

using ML-methods?

How we cannot solve the problem:

Refining Traditional DoE-Methods: 

strong assumptions and/or crazy heuristics

Using pure heuristic Machine Learning:

Data is costly.
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A good solution uses both: 

expert knowledge +                machine learning =               experiment

=+



A solution
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Think Bayes!

Experimental data ML Model Informed ML Model

Probabilistic Machine

Learning

A data scientist that does not 

fully trust the expert.

Initialisation

What the engineers in the lab 

measured once.

Pure Machine Learning

What a data scientist could do 

with the data.

Informed Machine Learning

An expert told the data scientist

that the response always falls 

back to a constant value.
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Active Learning, Bayesian Optimization and the sequential DoE Process
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Roasting Time

Coffee Experiment

ModelExperiments

update

acquire

Think Bayes!

Use acquisition functions to maximize information in relevant areas

of your process. 

Here: search for the minimum.
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A real project: overview and goal
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We have already successfully used machine learning for data-
driven prediction of fatigue properties of high-strength steels.

In this project, we use uncertainty-aware ML methods to predict 
the 50% fatigue strength and its scatter from material and 
component properties.

We use this prediction as a prior distribution and derive a 
recommendation for the load to be tested in the following 
experiment (design-of-experiments).

This recommendation is chosen in such a way that it optimally 
improves the fatigue strength estimation and minimizes the 
number of necessary experiments.

With each experiment, the prediction is refined.

!

★

Experiments to determine component and material 
properties are complex, time-consuming and expensive.!
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The problem

Task:

For a specific material, the fatique strength is log-normally

distributed. Find a method to estimate the mean of this

distribution at a given precision for a new material.

Given:

Mean of the distributions for different materials. (Some) full

experimental series. (material -> loads -> failure/survivor)
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Approach:

(Probabilistic) 

Regression 

Model

Material 

parameters

MAP estimate of

mean fatique 

strength

Prior:

normal 

distribution

Get point

with highest 

influence on 

mean fatique 

strength, 

update

anisotropy

Stressed volume

microstructure

roughnesshardness



Covariance functions (kernels)

Examples of covariance functions [Duvenaud, 2014]
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How does the covariance between a point at 1 and its
neighbours behave?

How do samples from the GP posterior with a single point
at (-100, 0) and a noise variance of 1 look like?



Covariance functions (kernels)

Examples of covariance functions [Duvenaud, 2014]
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How does the covariance between a point at 1 and its
neighbours behave?

How do samples from the GP posterior with a single point
at (-100, 0) and a noise variance of 1 look like?

Choosing the kernel means to implement assumptions about the

behaviour of the different materials.

Here, we implemented assumptions on linearity/smoothness/… for the

different inputs (hardness, …)
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A real Project Setup
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Prob.
Regression 
Model (GP)

Material parameters Fatique strength
𝜇𝑚, 𝜎𝑚

classical Bayes:
Use 𝜇𝑚, 𝜎𝑚 GPs as prior for the

fit of the (log)normally
distributed fatique strength in a 

MAP approach,
search for experiment with
largest influence on 𝜇𝑀𝐴𝑃

To 
convergence

𝑔(𝜇) = 𝑓 𝜇 ⋅ 𝑓 𝑠𝑖 , 𝑠𝑗 𝜇 =
1

2𝜋𝜎𝑚
exp − ൗ1 2

𝜇 − 𝜇𝑚
𝜎𝑚

2

⋅ ෑ

𝑖

Φ𝜇,𝜎( 𝑠𝑖) ⋅ ෑ

𝑗

1 − Φ𝜇,𝜎 ( 𝑠𝑗)

Prior 𝜇 ~ 𝑁(𝜇𝑚, 𝜎𝑚) Likelihood

failures i, survivors j
load s
Assumption: normal 
distribution of fatique strength

𝜇𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜇 𝑔(𝜇)MAP estimate

New experiment 𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠
𝑑𝑔

𝑑𝑠
= 𝜇𝑀𝐴𝑃

Uncertainty of MAP 𝑑𝜇𝑀𝐴𝑃= 𝑆𝑡𝑑 𝑔 𝜇

Posterior
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The posterior arised from the set-up: being a failure or not is a bernoulli-

distributed variable, the fatique strength is (like assumed in the GP) 

normally distributed.



The problem
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Results

With historical data, we could estimate that our approach reduces

the amount of necessary experiments by > 25 %.

In real life, that would mean a reduction of ~ 60.000 €.

A feasibility study will follow.
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Communication is king.
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domain expert
data scientist
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