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My Background
Academic:

• Bachelor in Electrical Engineering

• Master in Robotics, Cognition, Intelligence

• PhD student since April 2021
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Research:

• Project KI-ASIC: neuromorphic techniques for processing automotive radar data

• Biologically inspired Spiking Neural Network (SNN) algorithms

• Unsupervised Learning for SNNs
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Neuromorphic Computing 
Parallel, sparse, bio-inspired computing 

• Distributed, parallel computing units

• Sparse communication between computing units

• Inspired by biological neurons

• Many global companies & research institutes involved

[1]

[2]
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Neuromorphic Computing 
Spiking neural networks (SNNs) for Neuromorphic Computing

• The “third generation” of artificial neural networks (ANNs)

• Modeled more closely after biological neurons compared to ANNs
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Spiking neural networks (SNNs) for Neuromorphic Computing

• The “third generation” of artificial neural networks (ANNs)

• Modeled more closely after biological neurons compared to ANNs

7



Robotics, Artificial Intell igence and Real -Time Systems ▪ Department of Computer Science ▪ Technical University of Munich

Negin KarimiWiDS Regensburg 2022  |   Biologically Inspired Neuromorphic Algorithms Trained without Supervision05.07.2022

Neuromorphic Computing 
Spiking neural networks (SNNs) for Neuromorphic Computing

• The “third generation” of artificial neural networks (ANNs)

• Modeled more closely after biological neurons compared to ANNs
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Why Spiking Neural Networks?

Elegance of Biology
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Why Spiking Neural Networks?

Elegance of Biology Low-Power

10

[3]



Robotics, Artificial Intell igence and Real -Time Systems ▪ Department of Computer Science ▪ Technical University of Munich

Negin KarimiWiDS Regensburg 2022  |   Biologically Inspired Neuromorphic Algorithms Trained without Supervision05.07.2022

Why Spiking Neural Networks?

Elegance of Biology

Data, Data Everywhere

Low-Power
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Why Spiking Neural Networks?

Elegance of Biology

SecurityData, Data Everywhere

Low-Power
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Why Unsupervised Learning?
Implementation of Cerebellar Model on Intel's Loihi
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Why Unsupervised Learning?
Implementation of Cerebellar Model on Intel's Loihi
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Closed Loop Cerebellar Control of a Robot

Sensor data

Control commands

Robot Cerebellar
Controller
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Closed Loop Cerebellar Control of a Robot

Sensor data

Control commands

PID 

Cerebellum

Actual angle and Set motor angle

Robot Cerebellar
Controller
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Evolutionary Optimization for SNNs

18



Robotics, Artificial Intell igence and Real -Time Systems ▪ Department of Computer Science ▪ Technical University of Munich

Negin KarimiWiDS Regensburg 2022  |   Biologically Inspired Neuromorphic Algorithms Trained without Supervision05.07.2022

Evolutionary Optimization for SNNs
Random Initialization

19



Robotics, Artificial Intell igence and Real -Time Systems ▪ Department of Computer Science ▪ Technical University of Munich

Negin KarimiWiDS Regensburg 2022  |   Biologically Inspired Neuromorphic Algorithms Trained without Supervision05.07.2022

Evolutionary Optimization for SNNs
Random Initialization

Evaluation
and

Ranking
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Evolutionary Optimization for SNNs
Random Initialization Ordered Population

Evaluation
and

Ranking
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Evolutionary Optimization for SNNs
Random Initialization Ordered Population

Evaluation
and

Ranking Selection
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Evolutionary Optimization for SNNs
Random Initialization Ordered Population Parents Population

Evaluation
and

Ranking Selection
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Evolutionary Optimization for SNNs
Random Initialization Ordered Population Parents Population

Evaluation
and

Ranking ReproductionSelection
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Evolutionary Optimization for SNNs
Random Initialization Ordered Population Parents Population Children

Evaluation
and

Ranking ReproductionSelection
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Evolutionary Optimization for SNNs
The underlying aspirations:

• Learning learning rules

• Dealing with hardware constraints

• Enhacing resilience

• Applicability to various tasks
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Liquid State Machines
Reservoir Computing for SNNs

Input Layer Output Layer
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Liquid Layer
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Time-to-first-spike Neuron

[8]
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Neuromorphic Computing – Next Gen. AI
Modeling principles of SNNs

1. Encoding/decoding of the data
➢ Rate, temporal and population code

➢ Accuracy ↔ energy efficiency

2. Neuron model
➢ Differential equation for voltage

3. Synaptic model
➢ Weights, delays

4. Training algorithm
➢ Classic backpropagation does not work

➢ Bio. Inspired Hebbian learning, 
conversion of ANNs, surrogate gradients
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The KI-ASIC Project

• Funded by the German Ministry of Education 
and Research (BMBF)

• Implementation and evaluation of a full 
neuromorphic RADAR processing chain

• One of the first real-world implementations of 
SNNs on neuromorphic hardware
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RADAR Processing Chain

A/D 
conversion

DFT CFAR
Segmentation/

Clustering
Tracking/
Prediction

Classification

Signal Data Processing Object Data Processing
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• All-to-all connections

• One layer

• 8 connections per neuron

• Multiple layers

Radix-4 FFTDFT

Spiking FT architecture
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Spiking FT architecture


