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Static Algorithm
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Computational Problem

Performance measures: 
1. Running Time
2. Space



What is a Dynamic Algorithm?
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Computational Problem

𝐼0 𝑂0
𝐼0 + Δ𝐼1 𝑂1
𝐼0 + Δ𝐼1 + Δ𝐼2 𝑂2

…                                                                              …

Find output without recomputing each time 
from scratch



What is a Dynamic Algorithm: Data 
structure
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Computational Problem

Operations:

• Initialize(𝑆)

• Update(𝑢)

• Query()

• Query(𝑢)
…

Output
sequence

Sequence of
operations

Time per operation?
Total space?

Dynamic Algorithm



Outline

• Clustering algorithms

• Graph algorithms



Clustering

• Define problem(s)

• Algorithms:

– static

– dynamic



Metric space

• A metric space (𝑀, 𝑑) consists of:
– finite set of points 𝑀

– Distance function 𝑑:𝑀 ×𝑀 → ℝ≥0, 
which is a metric, i.e.:

• 𝑑 𝑢, 𝑣 = 0 ⟺ 𝑢 = 𝑣

• 𝑑 𝑢, 𝑣 = 𝑑 𝑣, 𝑢

• Triangle inequality:
𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢, 𝑥 + 𝑑(𝑥, 𝑣)

• For simplicity assume: 
𝑚𝑖𝑛 𝑢,𝑣 ∈𝑀×𝑀𝑑 𝑢, 𝑣 = 1
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𝑑(𝑢, 𝑣)

𝑣

𝑢



Point set and clustering

• Any finite subset 𝑆 ⊆ 𝑀 is a point set

➢ Clustering is the task of grouping a set of points s.t. points in 
the same group (cluster) are “closer” to each other than to 
those in other groups

8Source: Towardsdatascience.com



Point set and clustering
• Any finite subset 𝑆 ⊆ 𝑀 is a point set
• Clustering is the task of grouping a set of points 

s.t. points in the same group (cluster) are “closer” 
to each other than to those in other groups

How to measure the quality of a clustering?
➢Use a cost function and try 

to find a clustering that 
minimizes the cost function
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𝑥

Which cost function?

One popular approach: Pick set 𝐶 of 𝑘 points 
and call them centers. 

➢Cost function depends on distance to closest 
centers, i.e., distance to 𝐶

10

∈ C

∈ C
∈ C

∈ C

𝑑(𝑥, 𝐶) = distance to 
closest center



Which cost function?

One popular approach: Pick 𝑘 points and call them 
centers. 

➢ Cost function depends on distance to these centers

For each 𝑥 ∈ 𝑀: 𝑑 𝑥, 𝐶 = distance to closest center.

• 𝑘-means:      σ𝑥∈𝑆 𝑑(𝑥, 𝐶)
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• 𝑘-median:    σ𝑥∈𝑆 𝑑(𝑥, 𝐶)

• 𝑘-center:      𝑚𝑎𝑥𝑥∈𝑆 𝑑(𝑥, 𝐶)

• …

➢ Computing 𝑘 centers that minimize these cost function 
is NP-hard
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𝑘-means clustering: σ𝑥∈𝑆 𝑑(𝑥, 𝐶)
2



𝑘-center clustering: 𝑚𝑎𝑥𝑥∈𝑆 𝑑(𝑥, 𝐶)



Approximation Algorithm 

Let 𝜌 > 1. An algorithm is a 𝜌-approximation 
algorithm for a minimization problem if on any 
input (𝑀, 𝑑) it outputs a value cost(𝑀, 𝑑) such that

𝑂𝑃𝑇 ≤ 𝑐𝑜𝑠𝑡(𝑀, 𝑑) ≤ 𝜌 ∙ 𝑂𝑃𝑇

Example: 2-approximate k-center algorithm computes 
subset 𝐶 ⊆ 𝑆 such that 

𝑂𝑃𝑇 ≤ 𝑚𝑎𝑥𝑥∈𝑆𝑑(𝑥, 𝐶) ≤ 2 ∙ 𝑂𝑃𝑇
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Static 2-approx. 𝑘-center algorithm

Greedy (furthest-first) approach [Gonzalez ’85]:

– 𝐶 = ∅

– Arbitrary point of 𝑆 is added to 𝐶

– While 𝐶 < 𝑘:
• Add point 𝑢 of 𝑆 which maximizes 𝑑(𝑢, 𝐶) to 𝐶

Lemma: Greedy gives a 2-approximation to the 
optimal 𝑘-center clustering.

Running time: 𝑂 𝑘𝑛
i.e. ≤ 𝑐 ∙ 𝑘 ∙ 𝑛 for some constant 𝑐
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Static 2-approximate 𝑘-center algorithm
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Computational Problem:
Compute 2-approximate  𝑘-center clustering

Performance measures: 
1. Running Time:  𝑂(𝑘𝑛) [Gonzalez ’85]
2. Space: 𝑂(𝑛)

Note: 2 − 𝜖 -approximate 𝑘-center is NP-hard

(𝑀, 𝑑) 𝐶



Static Approx. 𝑘-Center Results
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Approx. 
ratio

Running Time Metric Authors

2 𝑂(𝑘𝑛) general Gonzalez ’85

Approx. 
ratio

Metric Authors

2 − 𝜖 general Gonzalez ’85

Algorithms:

Hardness:



Dynamic 𝜌-Approx. 𝑘-Center Algorithm

Operations:

• Initialize(𝑆)

• InsertPoint(𝑢)

• DeletePoint(𝑢)

• CentersQuery(): Output the 𝑘 centers

• ValueQuery(): Output a 𝜌-approximation of  𝑚𝑎𝑥𝑥∈𝑆𝑑(𝑥, 𝐶)

• PointQuery(𝑢): Return center closest to 𝑢
19

Output
sequence

Sequence of
operations

Dynamic algorithm: 
Maintains a set 𝐶 of 𝑘
centers whose cost is  

≤ 𝜌 ∙ 𝑂𝑃𝑇



Dynamic 𝜌-Approx. 𝑘-Center Algorithm

Operations:

• Initialize()

• InsertPoint(𝑢)

• DeletePoint(𝑢)

• CentersQuery(): Output the 𝑘 centers

• ValueQuery(): Output a 𝜌-approximation of  𝑚𝑎𝑥𝑥∈𝑆𝑑(𝑥, 𝐶)

• PointQuery(𝑢): Return center closest to 𝑢
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Output
sequence

Sequence of
operations

Dynamic algorithm: 
Maintains a set 𝐶 of 𝑘
centers whose cost is  ≤ 𝜌 ∙
𝑂𝑃𝑇

Time per operation?



Dynamic Approx. 𝑘-Center Algorithm
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Approx. 
ratio

Update 
types

Time per 
operation

Randomized Amortized

2 + 𝜖 insert-only
𝑂(
𝑘 log𝑘

𝜖 log 𝜖
)

no yes McCutchen, 
Khuller ‘08

2 + 𝜖 fully dynamic
𝑂(
𝑘2 log ∆

𝜖
)

yes yes Chan, 
Guerquin, 
Sozio ‘18

Special case: Euclidean space ℝ𝑑?



Static Approx. 𝑘-Center Results
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Approx. 
ratio

Time per operation Metric Authors

2 𝑂(𝑘𝑛) general Gonzalez ’85

2 𝑂(𝑛 log 𝑛) ℝ𝑑, constant d Har-Peled&Mendel ‘04

Approx. 
ratio

Metric Authors

2 − 𝜖 general Gonzalez ’85

1.932 ℝ𝑑, constant d Mentzer ‘88

Algorithms:

Hardness:



Dynamic Approx. 𝑘-Center Algorithm
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Approx. ratio Update 
types

Time per operation Rando
mized

Metric

2 + 𝜖 insert-only
𝑂(
𝑘 log 𝑘

𝜖 log 𝜖
)

no general McCutchen, 
Khuller ‘08

2 + 𝜖 fully dynamic
𝑂(
𝑘2 log ∆

𝜖
)

yes general Chan et al. 
‘18

2 + 𝜖 fully dynamic
2𝑂(𝑑)

log ∆ log log∆

𝜖

no ℝ𝑑, 
constant d

Goranci, 
Henzinger, 
Leniowski, 
Svozil ‘19



𝑟-net

Example: 2-net



Navigating net

Can be maintained
under points updates
in time O(log∆ log log∆)
(Krauthgamer Lee ‘04)

A navigating net is the following hierarchy of 2-nets:
• 𝑌20 = 𝑆
• For i = 1 to log n:

𝑌2𝑖 = 2𝑖-net of 𝑌2𝑖−1



8-approximation algorithm

• Step 1: Construct/update navigating net

• Step 2: Output deepest level 𝑌𝑟 with ≤ 𝑘 centers

Lemma: 𝑚𝑎𝑥𝑥∈𝑀𝑑 𝑥, 𝐶 ≤ 8 ∙ 𝑂𝑃𝑇

Note: 

• Can be improved to (2 + 𝜀) for any small 𝜀 > 0



Experimental Results

𝒜𝐶𝑜𝑣: our algorithm, 2 + 𝜖 approx., 
log ∆ log log ∆

𝜖
time per 

operation

𝒜𝐶𝐺𝑆: Chan et al.’ 18, 2 + 𝜖 approx., 
𝑘2 log ∆

𝜖
time per operation



Experimental Results
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Speedup of 𝒜𝐶𝑜𝑣

over 𝒜𝐶𝐺𝑆

Solution improvement
of 𝒜𝐶𝑜𝑣 over 𝒜𝐶𝐺𝑆



Dynamic graph algorithms

• Define problem

• State of the art



What is a (Fully) Dynamic Graph 
Algorithm?

Computational graph problem

Operations:

• Initialize(G)

• InsertEdge(u, v, 𝑤𝑒𝑖𝑔ℎ𝑡)

• DeleteEdge(u,v)

• (InsertNode(u))

• (DeleteNode(u))

• Query(G) or Query(u) or Query(u, v)
30

Output
sequence

Dynamic algorithm
Sequence of
operations



Motivation

1. Real-world applications

1. 62% graphs in survey of Sahu et al. ’17 are 
dynamic

2. Fundamental computational question

3. Subroutines in static graph algorithms
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Update time for “classic’’ problems
with polylog query time

• Undirected: For any small constant 𝜖 > 0
– Connectivity: Ω(log 𝑛) [Patrascu-Demaine ‘04], ෨𝑂(1) [H-

King ’95, Holm-deLichtenberg-Thorup ’98]
– MST: Ω(log 𝑛) [Patrascu-Demaine ‘04], ෨𝑂(1) [Holm-

deLichtenberg-Thorup ’98]
– Single-source shortest paths:

• Exact: Ω 𝑚1−𝜖 , ෨𝑂(𝑚)
– All-pairs shortest paths: Exact: Ω 𝑚1−𝜖 , ෨𝑂(𝑛2)

[Demetrescu-Italiano ‘03]
– Minimum Cut: 

• Ω 𝑛1−𝜖 weighted exact, ෨𝑂(𝑚)
– Maximum cardinality matching:  

• Ω 𝑚1/2−𝜖 exact, 𝑂 𝑚
• 2-approximate: 𝑂(1) [Salomon ’16, Bhattacharya-H-

Italiano’15, Bhattacharya-Kulnikarni ‘18]
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Update time for ``classic’’ problems
with polylog query time

• Directed: For any small constant 𝜖 > 0

– Reachability/SSSP:

• Ω 𝑚1−𝜖 , 𝑂(𝑚)

– SCC: Is the graph strongly connected?

• Ω 𝑚1/2−𝜖 , 𝑂 min 𝑚, 𝑛1.406 [van den Brand, 
Nanongkai, Saranurak ‘19]

– Transitive closure:

• Ω 𝑚1−𝜖 , ෨𝑂(𝑛2)

– All-pairs shortest paths:

• Ω 𝑚1−𝜖 , ෨𝑂(𝑛2) update, ෨𝑂(𝑛) path reporting query 
Demetrescu-Italiano ‘03]
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Update time for approximation algorithms
with polylog query time

– (∆ + 𝟏) − vertex coloring:
• 𝑂(1) [H-Peng ‘19, Bhattacharya, Grandoni, Kulkarni, Liu ‘19]

– 𝟏 + 𝜺 - approx min spanning forest value: 
• 𝑂(1) if max weight is 𝑂(𝑚1/3) [H-Peng’19]

– Edge orientation with low outdegree:

• 𝑂 1 for 𝑂 (log 𝑛)2 −approximation [Berglin-Brodal ‘17]

– 𝟏 + 𝜺 - approx densest subgraph and 𝟐 + 𝜺 - approx
degeneracy : 
• ෨𝑂 1 [Sawlani-Wang ’19]

– 𝟒 + 𝜺 - approx k-core decomposition: 
• ෨𝑂 1 [Sun-Chan-Sozio ’20]

– 𝟏 + 𝜺 - electrical flow: 
• 𝑂(min(𝑚3/4, 𝑛5/6)) [Durfee-Gao-Goranci-Peng ’19]
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Summary

• Dynamic 𝑘-center clustering:
– Efficient algorithms exist

• Dynamic k-means clustering:
– More research needed

• Dynamic graph algorithms:
– Efficient algorithms for many problems exist – or are 

not possible

– More research needed:
• Dynamic graph partitioning into 

roughly equally-sized subgraphs

• Dynamic graph clustering


