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Methods & Challenges for the Safety Assurance of DNNs

in Computer Vision

www.continental.com Gesina Schwalbe (gesina.schwalbe@continental-corporation.com)

› Goals:

› Show that safety for DNNs is a challenge

› Show how broad the topic is

› About me:

› 3rd year PhD at Conti Automotive he[a]t AI

› Supervised by Ute Schmid, Uni Bamberg

› PhD topic: Safety assurance of DNNs for automotive 

perception via concept embedding analysis (quantitative 

introspection)
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Background
Why should we care?
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Automated driving
Industry 4.0

Medical assistant systems
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Background
What is safety?
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Rating safety: Safety Integrity Levels (ISO 26262-3, 6.4.3) derived from

› Probability, Severity, Controllability

Def. Safety
means absence of unreasonable risk due to

• malfunction (ISO 26262-1, 3.132)

• intended functionality

(misuse, performance limitation, environment) (ISO/PAS 21448)

[…] according to valid societal

moral concepts (ISO 26262-1, 3.176) 

› What is safety?

› Absense of unreasonable risk for harm (=physical injury 

or damage to the health of persons)

› = probability + severity + controllability

› Different causes for safety issues handled by different 

standards: malfunction, misuse, …
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DNN properties

• Open world context

• ML algorithms:

• High-dimensional & black-box

• May be counterintuitive & instable

• Monolithic

• Inherent uncertainty

ISO 26262 SW component assessment

• Testing w/ test cases derived from (ISO 26262-6, Tab. 8)

• Requirements & boundaries

• Equivalence classes

• Expert knowledge

• Formal verification

• Inspection

• Implementation measures

Challenges: What’s new?

vs. recommended properties (ISO 26262-6, 8.4.5):
Simplicity, comprehensibility, robustness, suitability for software modification, verifiability

(ISO 26262-6, Tab. 7)

2021-04-14
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Takeaways:

• ISO 26262 is implementation centric, and does little consider 

issues of the algorithm (only using system simulation)!

• Replacements for formal verification & inspection needed

• Assistance for coverage needed

Not considered here:

• HW integration, 

• integrated validation, 

• SOTIF aspects, etc.

Details on the mentioned points:

› Open world ->

› Hard to formulate (formally verifiable) requirements like 

coverage

› Hard to structure input space (what is the manifold of 

6



real images?)

› What is expert knowledge for an open world? Physics? 

Traffic statistics?

› ML ->

› Not manually crafted -> little expert knowledge

› Black-box -> hard to inspect

› Large & complex -> hard to formally verify

› Little best-practices available -> hard to estimate influence 

of implementation measures

› Uncertainty -> increases implementation efforts
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cf. (Voget et al. 2018)

Types of Methods
The ML-based System
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Inherent Model
e.g. neural network

Learning 

Goal
Training 

Procedure

Post-

processing
e.g. pruning

Learning Content
e.g. training data,

symbolic knowledge

Model prior

Prevent causes 

for errors!

Verify & validate!

…

Prevent & 

catch errors!

› ML system is (MUCH) more than just the DNN!

› Structured way to find safety issues: Go along the life-cycle 

& 

› 3 pillars to ensure safety:

› Build it right

› Check it

› Fail safe integration
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› Image manipulation

› Addition of artifacts

› Domain randomization

› Image generation › Counterexample generation
(Dreossi et al. 2018)

Creation
Training Data Optimization

(Geirhos et al. 2019), Fig. 1“speed limit 45”

(Eykholt et al. 2018, Tab. 1)

+ =

“bus” “ostrich”

in:

out:

(Guo et al. 2018, Fig. 1, p. 2)
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General goals: Make model

› invariant wrt. irrelevant features

› focus on relevant features

• Domain randomization = vary parameters unimportant for 

task

• Standard methods for image artifacts: gaussian noise, 

kernels, cropping, blurring, overlay, …

Details on the References:
• (Eykholt et al. 2018): They generate real world adversarial examples

• (Geirhos et al. 2019): Experiments on the texture-bias of standard 

models

• (Dreossi et al. 2018): Select counterexamples from a semantic feature 

space by singular value decomposition and search

• (Guo et al. 2018): DLFuzz framework for fuzzy DNN testing
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› Explainable intermediate 

output, e.g.

› Attention heatmaps

› Soft training constraints, 

e.g.

› Hierarchical

(Roychowdhury, Diligenti, and Gori 2018)

› Locality of activations

› Robustness against 

perturbations

› Proper uncertainty output, 

e.g. via

› Ensembling

› Bayesian DNNs

Creation
Architecture and Training Objective

(Kim and Canny 2017), Fig. 5

2021-04-14
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Movables

Persons Cars

(Kendall & Gal 2017, Fig. 1, p. 2)

Goals:

› enable intospection

› encode more expert knowledge

About uncertainty: Normal confidence often badly calibrated; other 

options:

• Calibrate confidences (e.g. temperature scaling)

• Ensembling → costly

• Modify architecture towards Bayesian net

Details on the References:

• (Kim and Canny 2017): Add multiplicative mask module that 

learns represents attention heatmap

• (Roychowdhury, Diligenti, and Gori 2018): Add super-class neurons to 

classification net and enforce the super-class relationship using fuzzy 

logic to formulate the regularization terms

• (Kendall & Gal 2017): Suggestion of using Monte-Carlo dropout for 

uncertainty outputs
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› “Attention” heatmap-methods for plausibility checks, e.g.

› White-box (gradients, relevance back-propagation, …)

› Black-box (occlusion based, perturbation based …)

› Knowledge extraction: Disentanglement of internal semantics

› Similarity of learned concepts
(Fong and Vedaldi 2018), (Schwalbe and Schels 2020)

Offline Verification
Quantitative Explainable AI

(Kindermans et al. 2018), Fig. 6

“woodish”

“greenish”

“treeish”

𝑣𝑤
𝑣𝑡

𝑣𝑔

Illustration of (Fong and Vedaldi 2018), Tab. 3
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Goals:

› Enable (post-hoc) inspection of model

There are many methods that try to assist in corner case 

detection. This is only useful if

- actual faults can be derived from the corner cases that imply 

mitigation methods (e.g. corner cases can be used for 

training data augmentation)

- this can be done online

Details on the References:
• (Kindermans et al. 2018): PatternAttribution: do a backprogation of 

activations from output to input that fulfills certain axioms; “improved” 

LRP

• (Fong and Vedaldi 2018): Net2Vec: They found that vector relations in 

the latent space of classifiers actually can encode semantic relations

• (Schwalbe and Schels 2020): Suggestions on how to use post-hoc 

concept extraction from DNNs for verification
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Formal verification

› Goals: Find

› counterexamples

› validity range

› reachable set

› Methods:

Layer-by-layer reachability / 

boundary estimation,

(constrained) optimization,

search, solvers, …

(Formal) Testing

› Goals:

› Semantic coverage e.g. via SDL & sampler

› Latent space coverage (direct & indirect)

› Methods:

Differential,

fuzzy,

concolic, …

Offline Verification
Formal Methods

2021-04-14
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(Liu et al. 2019), Fig. 2

𝑥

f(
x
)

estimated

bound

actual bound

Goals:

› Guarantees about formal properties

› High coverage testing

• Def. “Formal testing refers to testing methods that include 

formalized and formally verifiable steps”

• Differential testing = try to maximize the output difference of 

several models

• Fuzzy testing = explorative testing starting from seeds

• Examples of scene description languages (SDL):

• SCENIC: https://scenic-lang.readthedocs.io/en/latest/

• OpenSCENARIO: 

https://www.asam.net/standards/detail/openscenario/

Details on the References:

• (Liu et al. 2019): Very good and extensive review on different types of 
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formal verification for DNNs
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› Input filtering

› Redundancy & voting

› Monitoring, e.g. using

› Uncertainty output

› Temporal consistency

› Consistency of outputs

› independent outputs

› dependent outputs

Online Verification: System level measures

2021-04-14
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𝑓(𝑥)

Voting

…

Goals:

› Prevent errors

› Catch errors

› Examples for input filtering:

› Remove inadequate inputs

› Filter out perturbances / adversarial features

› Examples for consistency checks:

› Independent outs: compare LiDAR and camera

› Dependent outs: head without pedestrian?
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› Safety of DNNs requires new methods!

› Categories:

› Creation (“build it right”)

› V&V (“check it right”)

› System design (“prevent / mitigate failing in op”)

› Broad spectrum of methods in development

Conclusion

2021-04-14
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Safety of ML:

On a good way,

but still challenging

› Note on XAI:

› XAI means to assist in inspection, trust, etc. 

› Inspection is just ONE method for safety assurance!

› Quantative methods needed!!
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Questions?

Contact: Gesina.Schwalbe@continental-corporation.com

Thanks!
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