Dynamic Algorithms for Graphs
and Clustering

Monika Henzinger

Static Algorithm

Computational Problem

Input >
I

Algorithm

Performance measures:

1. Running Time
2. Space

> Output

What is a Dynamic Algorithm?

Computational Problem

Input > Algorithm >»Output
I, 0,

Find output without recomputing each time
from scratch

What is a Dynamic Algorithm: Data
structure

Computational Problem

Sequence of , , Output
: > Dynamic Algorithm >
operations sequence

Operations:

* Initialize(S) Time per operation?
* Update(u) Total space?

* Query()

* Query(u)

Outline

* Clustering algorithms
* Graph algorithms

Clustering

* Define problem(s)
e Algorithms:

— static
— dynamic

Metric space

* A metric space (M, d) consists of:
— finite set of points M

— Distance function d: M X M — R,
which is a metric, i.e.:

|
N — o (=] N w s
T

-3 =2 -1 0 1 2 3 4 5 6
T

cd(u,v) =0 u=v o
e d(u,v) =d(v,u) /uZi(u, v)

* Triangle inequality:
d(u,v) <d(u,x) +d(x,v)

* For simplicity assume:
min(u,v)EMde(u; v) =1

Point set and clustering

* Any finite subset S © M is a point set

» Clustering is the task of grouping a set of points s.t. points in
the same group (cluster) are “closer” to each other than to
those in other groups

Original unclustered data Clustered data

Source: Towardsdatascience.com

Point set and clustering

* Any finite subset S € M is a point set

* Clustering is the task of grouping a set of points
s.t. points in the same group (cluster) are “closer”
to each other than to those in other groups

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

25T o 1 7 3 4 s e R R

How to measure the quality of a clustering?

» Use a cost function and try
to find a clustering that
minimizes the cost function

Which cost function?

One popular approach: Pick set C of k points
and call them centers.

» Cost function depends on distance to closest
centers, i.e., distance to C

e€C eC
[
d(x,C) = distance to
closest center X

ec‘ o <C

Which cost function?

One popular approach: Pick k points and call them
centers.

» Cost function depends on distance to these centers
For each x € M: d(x, C)= distance to closest center.
* k-means: X, ,ccd(x,C)?

e k-median:),,ecd(x,C)

* k-center: max,es d(x,C)

» Computing k centers that minimize these cost function
is NP-hard

k-means clustering: Y., cc d(x, C)?

Unequal Variance Unevenly Sized Blobs

®
21 t &
- 57
0 L]
* o
o o
o o'

-4
-6
-8
-125 -100 -7.5 -50 -25 00 25 -100 -75 =50 -25 00 25 5.0
Incorrect Number of Blobs Anisotropicly Distributed Blobs
2
0
24
-4
-6
-84
.

-100 -75 =50 -25 0.0 25 50 -6 -4 -2 0 2 4

k-center clustering: max,.cs d(x, C)

® B
“ ‘. :;o .\.. :\
2 e - 9" .
el 3 "o o PN,
" - °
0 b '
g e’ L

Approximation Algorithm

Let p > 1. An algorithm is a p-approximation
algorithm for a minimization problem if on any
input (M, d) it outputs a value cost(M, d) such that

OPT < cost(M,d) < p - OPT

Example: 2-approximate k-center algorithm computes
subset C € S such that
OPT < max,csd(x,C) < 2-0PT

15

Static 2-approx. k-center algorithm

Greedy (furthest-first) approach [Gonzalez ’85]:
—C=¢
— Arbitrary point of S is added to C
— While [C| < k:
* Add point u of S which maximizes d(u,C) to C

Lemma: Greedy gives a 2-approximation to the
optimal k-center clustering.

Running time: O (kn)
le.<c- k - n for some constant ¢

Static 2-approximate k-center algorithm

Computational Problem:
Compute 2-approximate k-center clustering

Input
(M, d)

—>

Algorithm

Performance measures:

1. Running Time: O (kn) [Gonzalez '85]
2. Space: 0(n)

Note: (2 — €)-approximate k-center is NP-hard

> Output
C

17

Static Approx. k-Center Results

Algorithms:
Approx. Running Time
ratio
0(kn) general Gonzalez '8
Hardness:

Approx.
ratio

2—€ general Gonzalez '85

18

Dynamic p-Approx. k-Center Algorithm

Dynamic algorithm:
Sequence of Maintains a set C of k Output
—> >
operations centers whose cost is sequence
<p-0PT
Operations:
 [nitialize(S)

InsertPoint(u)

DeletePoint(u)

CentersQuery(): Output the k centers

ValueQuery(): Output a p-approximation of max,csd(x, C)
PointQuery(u): Return center closest to u

19

Dynamic p-Approx. k-Center Algorithm

Dynamic algorithm:
Sequence of Maintains a set C of k Output
. ﬁ . ﬁ
operations centers whose costis < p - sequence
OPT
Operations:
* |nitialize()

Time per operation?
InsertPoint(u)

DeletePoint(u)

CentersQuery(): Output the k centers

ValueQuery(): Output a p-approximation of max,csd(x, C)
PointQuery(u): Return center closest to u

20

Dynamic Approx. k-Center Algorithm

Approx. Update Time per Randomized | Amortized
ratio types operation

2+¢€ insert-only klogk McCutchen,
(eloge Khuller ‘08
2+ € fully dynamic k?log A yes yes Chan,
o(€ Guerquin,
Sozio ‘18

Special case: Euclidean space R%?

21

Static Approx. k-Center Results

Algorithms:
Approx. Time per operation
ratio
0(kn) general Gonzalez '8
2 O(nlogn) R4, constantd Har-Peled&Mendel ‘04
Hardness:

Approx.
ratio

2—€ general Gonzalez '85
1.932 R%, constantd Mentzer ‘88

22

Dynamic Approx. k-Center Algorithm

Approx. ratio | Update Time per operation | Rando
types mized

insert-only k logk general McCutchen,
e loge Khuller ‘08
2+ € fully dynamic k?log A yes general Chanetal.
0O(——) 18
€

2+ e fully dynamic »0(d) log Aloglog A no R% Goranci,
€ constantd Henzinger,
Leniowski,

Svozil ‘19

23

r-net

dist > 2

Example: 2-net ‘3A—5A
NNV
JIVNANIL |

123456789 10

Definition (r-net)

Given a metric space (M, d) and integer r > 0, r-net Y, C M is a set of
points (centers), with

@ (covering) M C Uerr (y,r),
o (separating) distinct points y,y’ € Y, have d(y,y’) > r

0 Yy

Navigating net

Yoo
v Can be maintained
3 N Y 2 under points updates
/#.f VZER 7T in time O(logAloglogA)
/ (VAN /o
AN TN 771 (Krauthgamer Lee ‘04)
JIVINANVTT (v
1 23456728910

A navigating net is the following hierarchy of 2-nets:
* Y0=39§
* Fori=1tologn:

Y,i= 2t-net of Y i1

8-approximation algorithm

* Step 1: Construct/update navigating net

* Step 2: Output deepest level Y, with < k centers
Lemma: max,eyd(x,C) < 8- O0PT

Note:

* Can be improvedto (2 + ¢) forany small € > 0

Experimental Results

. log Aloglog A ..
Aoyt our algorithm, 2 + € approx., 8 Eg = time per
operation
k? log A

Accs: Chanetal’ 18, 2 + € approx., time per operation

@ Instances:

o Twitter (geotagged tweets),
o Flickr (metadata from pictures) and
o Random (sample centers then sample points for each centers)

@ All instances use euclidean distance

@ Dynamic Instances:

o Random insert/delete (30% deletions, 10% deletions, 5% deletions)
e Sliding Window: insert point at time t and remove at time t + W

Experimental Results

€ — 0.1 0.5 1.0 4.0

k|

20 0.02 014 032 072
Speedup of A¢yy 50 010 059 1.34 3.05
over Accs 100 033 2.01 445 10.32

200 1.15 7.66 17.74 39.60

20 097 1.12 1.27 1.07
Solution improvement 50 097 1.10 1.36 1.46
of Aoy Over Accs 100 096 1.12 112 2.14
200 096 1.12 1.19 1.28

@ Larger k and € — larger speedups of Ac,, over Accs
@ For k =200, Ac,y is faster than Acag for all values of e.
@ Solution quality: For € > 0.5 — Ac,, 10 — 12% better solutions

Dynamic graph algorithms

* Define problem
e State of the art

What is a (Fully) Dynamic Graph
Algorithm?

Computational graph problem

Sequence of , ,
e Dynamic algorithm , Output
operations sequence
Operations:
 |nitialize(G)

InsertEdge(u, v, weight)
DeleteEdge(u,v)
(InsertNode(u))
(DeleteNode(u))

Query(G) or Query(u) or Query(u, v)

30

Motivation

1. Real-world applications

1. 62% graphs in survey of Sahu et al. ’17 are
dynamic

2. Fundamental computational question
3. Subroutines in static graph algorithms

Update time for “classic’’ problems

with polylog query time
* Undirected: For any small constante > 0

— Connectivity: Q(log n) [Patrascu-Demaine ‘04], O(1) [H-
King 95, Holm-deLichtenberg-Thorup ’98]
— MST: Q(log n) [Patrascu-Demaine ‘04], 0(1) [Holm-
deLichtenberg-Thorup ’98]
— Single-source shortest paths:
e Exact: OA(m'~¢),0(m)
— All-pairs shortest paths: Exact: Q(m' ™€), 0(n?)
[Demetrescu-Italiano ‘03]
— Minimum Cut:
« Q(n'~¢) weighted exact, O(m)
— Maximum cardinality matching:
* Q(m'/?7¢) exact, 0(m)

e 2-approximate: O(1) [Salomon ’16, Bhattacharya-H-
Italiano’15, Bhattacharya-Kulnikarni ‘18]

32

Update time for classic” problems

with polylog query time

* Directed: For any small constante > 0

— Reachability/SSSP:
« Q(m!'~¢),0(m)
— SCC: Is the graph strongly connected?

> Q(m'/27¢), 0(min(m, n'*%¢)) [van den Brand,
Nanongkai, Saranurak ‘19]

— Transitive closure:
« Q(m'~¢), 0(n?)
— All-pairs shortest paths:

« Q(m'~¢), 0(n?) update, O(n) path reporting query
Demetrescu-Italiano ‘03]

Update time for approximation algorithms
with polylog query time
— (A + 1) — vertex coloring:
* 0(1) [H-Peng ‘19, Bhattacharya, Grandoni, Kulkarni, Liu “19]
— (1 + &)- approx min spanning forest value:
¢ 0(1) if max weight is 0(mm'/3) [H-Peng’19]
— Edge orientation with low outdegree:
 0(1) for 0((logn)2) —approximation [Berglin-Brodal ‘17]

— (1 + &)- approx densest subgraph and (2 + &)- approx
degeneracy :

« 0(1) [Sawlani-Wang '19]
— (4 + &)- approx k-core decomposition:
« 0(1) [Sun-Chan-Sozio '20]
— (1 + &)- electrical flow:
* 0(min(m3/*,n5/%)) [Durfee-Gao-Goranci-Peng '19]

Summary

* Dynamic k-center clustering:
— Efficient algorithms exist

 Dynamic k-means clustering:
— More research needed
 Dynamic graph algorithms:
— Efficient algorithms for many problems exist — or are
not possible

— More research needed:

* Dynamic graph partitioning into
roughly equally-sized subgraphs

* Dynamic graph clustering

